
ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem A. ASCII Area
Input file: ascii.in
Output file: ascii.out

Long time ago, most of PCs were equipped with video cards that worked only in text mode. If the
programmer wanted to show a picture on a screen, he had to use pseudographics or ASCII art like this:

^..^

(OO)

/ \

()()

In this problem you are given a polygon, drawn using ASCII art. Your task is to calculate its area.

The picture is formed using characters ‘.’, ‘\’, and ‘/’. Each character represents a unit square of the
picture. Character ‘.’ represents an empty square, character ‘/’ — a square with a segment from the
lower left corner to the upper right corner, and character ‘\’ — a square with a segment from the upper
left corner to the lower right corner.

/\/\

\../

.\.\

..\/

Input
The first line of the input file contains integer numbers h and w (2 ≤ h,w ≤ 100) — height and width of
the picture. Next h lines contain w characters each — the picture drawn using ASCII art.

It is guaranteed that the picture contains exactly one polygon without self-intersections and self-touches.

Output
Print to the output file one integer number — the area of the polygon.

Sample input and output

ascii.in ascii.out
4 4
/\/\
\../
.\.\
..\/

8

Page 1 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem B. Binary Encoding

Input file: binary.in
Output file: binary.out

Binary encoding represents integer numbers from 0 to 2n − 1 inclusive with n bits, each bit is either 0
or 1. In binary encoding most significant digit is written first. Two binary codes are compared from left
to right, from the most significant digit to the least significant one. Binary codes are uniquely assigned
to numbers from 0 to 2n − 1 is a such a way, that corresponding binary codes for numbers in ascending
order are themselves in ascending order. For example, binary encoding for numbers from 0 to 7 is:

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111

Truncated binary encoding generalizes binary encoding to represent integer numbers from 0 to m − 1
inclusive, where m may or may not be equal to 2n for some integer number n. Unlike binary encoding,
truncated binary encoding uses different number of bits to represent different numbers. If n is the smallest
integer number such that m ≤ 2n, then truncated binary encoding represents each number from 0 to
m−1 with n or with n−1 bits. Some numbers are encoded with n−1 bits only if m < 2n; when m = 2n

truncated binary encoding is the same as binary encoding. Truncated binary codes are compared from
left to right, just like binary codes.

Truncated binary encoding also satisfies the following rules:
• Smaller integer numbers are represented with smaller or the same number of bits as larger ones.
• Truncated binary codes for numbers in ascending order are themselves in ascending order.
• Truncated binary codes for numbers from 0 to m − 1 are unique.
• No code with n − 1 bits is a prefix of any code with n bits.
• The total number of bits used to represent numbers from 0 to m − 1 is minimal.

For example, truncated binary encoding for numbers from 0 to 5 is:

0 00 4 110
1 01 5 111
2 100
3 101

Your task is to encode numbers from 0 to m − 1 with truncated binary encoding.

Input
The input file contains integer number m (2 ≤ m ≤ 10000).

Output
Write to the output file m lines. These m lines shall contain truncated binary encoding of numbers from
0 to m − 1 in ascending order.

Sample input and output
binary.in binary.out

6 00
01
100
101
110
111

Page 2 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem C. Caption

Input file: caption.in
Output file: caption.out

Advanced Caption Machines (ACM) produces electronic captions that are used as labels, signs, and
tags in various brick-and-mortar stores. They range from small tags that are used on the shelves of the
stores to the large signs for the rows. Electronic captions use flip disks, electronic ink and other similar
technologies to display one line of text so that this text can be electronically changed as needed. The
common to all these display technologies that are used by ACM is that they represent a text with m×n
grid of pixels that can be individually electronically turned on or off and indefinitely retain their state.
For example, if turned off pixels are represented with ‘.’ and turned on pixels are represented with ‘*’,
then one of the ways to display the text “ACM ICPC” on a 5 × 53 grid of pixels is:

.....*....****.*...*.........*....****.****...****...

....*.*..*.....**.**.........*...*.....*...*.*.......

...*...*.*.....*.*.*.........*...*.....****..*.......

...*****.*.....*...*.........*...*.....*.....*.......

...*...*..****.*...*.........*....****.*......****...

The advantage of an electronic caption is that energy is consumed only to flip the state of individual
pixels. The total energy required to change displayed text to some other text is proportional to the
number of pixels flipped.

ACM is mindful about nature conservation. The whole concept and marketing model of ACM’s business
is built around preservation of natural resources. Without ACM’s captions stores had to print out new
labels, signs, and tags whenever they had to change the layout of goods in the store, thus throwing old
labels, signs, and tags away. ACM had decided to go even further and had figured out that each change of
text on their electronic captions requires some electrical energy which should be conserved, too, because
electrical energy is still mostly produced from non-renewable fossil fuels with their harmful emissions.

Fortunately, when one text is changed to the other text on an electronic caption, there is always a leeway
in how the text can be laid out on m × n grid of pixels. The text is always written in a fixed-width font
where each letter is represented by a m× k grid of pixels. However, the spacing between the letters in a
caption can vary from smin pixels to smax pixels. The left-right position of the text in a caption can also
vary. Together, that gives enough freedom to optimize the text update procedure, so that the number of
pixels that need to change is minimized, thus minimizing the energy expenditure.

For example, the optimal way to change the text on the caption above to “NEERC” while maintaining
spacing between the letters from 1 to 2 pixels is shown below. Only 61 pixels will have to be flipped (34
pixels will be turned off and 27 pixels will be turned on).

...................*...*..*****..*****.****...****...

...................**..*..*......*.....*...*.*.......

...................*.*.*..***....***...****..*.......

...................*..**..*......*.....*.*...*.......

...................*...*..*****..*****.*..*...****...

Your team is assigned with a task to write a procedure that finds the optimal caption layout for the
new caption text given the text that it currently contains, so that the number of pixels to update is
minimized.

Page 3 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Input
The first line of the input file contains 5 integer numbers m, n, k, smin, and smax, where m (5 ≤ m ≤ 30)
is the number of rows on the caption, n (5 ≤ n ≤ 2000) is the number of columns on the caption, k
(5 ≤ k ≤ 30) is the width of each letter in the font, smin and smax (0 ≤ smin ≤ smax ≤ 30) are the
minimal and the maximal allowed spacing between letters in pixels correspondingly.

The following m lines of the input file contain description of the font. Each line of the font description
contains t(k + 3) − 1 characters, where t (1 ≤ t ≤ 26) is the number of Latin letters that are defined
in this font. The grid with m rows and t(k + 3) − 1 columns on those m lines is composed of m × k
grids of characters ‘.’ and ‘*’ defining the font for uppercase Latin letters from A to Z. The letters that
are defined appear on the first line before the corresponding grids. Everything is arranged in the same
way as in the sample input below. The first of those m lines uses a total of 2t − 1 spaces as delimiters,
subsequent lines use 3t − 1 spaces each. Letters do not necessary appear in alphabetic order, but each
letter is defined at most once.

The space character is assumed to be implicitly defined in any font as m × k grid of ‘.’. The spacing
between spaces and other letters is bound by the same smin and smax constraints, the space is treated
just as a letter.

The next line contains the text that is currently displayed on the electronic caption. This string has ccur

characters (1 ≤ ccur ≤ 30) – uppercase Latin letters from A to Z and spaces. There are no leading or
trailing spaces.

The line after that contains ccur non-negative integer numbers. Each number defines the spacing (in
pixels) before the corresponding letter or space of the currently displayed string. The first number is the
spacing from the left side of the caption to the first letter, the second number is the spacing from the
first letter to the second letter or space, etc. The whole string fits on the caption. The spacing for the
currently displayed string does not have to obey smin and smax limits.

The next line contains the new text that should be displayed on the electronic caption. This string has
cnew characters (1 ≤ cnew ≤ 30) – uppercase Latin letters from A to Z and spaces. There are no leading
or trailing spaces.

All Latin letters that are used for the current and the new text are defined in the font description.

Output
Write to the output file a single line with cnew integer numbers, denoting the optimal spacing for the new
text. The first number is the spacing from the left side of the caption to the first letter and should be
non-negative, the second number is the spacing from the first letter to the second letter or space, etc. The
spacing between the letters and space characters should be between smin and smax pixels inclusive. The
text shall fit on the electronic caption. There is always at least one way to fit the text on the electronic
caption satisfying the above constraints. If there are multiple optimal answers, write any of them.

Sample input and output
caption.in

5 53 5 1 2
A ..*.. C .**** E ***** I ..*.. M *...* N *...* P ****. R ****.
.*.*. *.... *.... ..*.. **.** **..* *...* *...*
... *.... ***.. ..*.. *.*.* *.*.* ****. ****.
***** *.... *.... ..*.. *...* *..** *.... *.*..
... .**** ***** ..*.. *...* *...* *.... *..*.

ACM ICPC
3 1 1 1 1 1 1 1
NEERC

caption.out
19 2 2 1 1

Page 4 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem D. Dictionary Size

Input file: dictionary.in
Output file: dictionary.out

The government of Disleksik Piple’s Ripublyc had decided to improve literacy level of its citizens. To
this end, the government issued a decree with a full list of dictionary words.

The rules for construction of new words were also greatly simplified: an approved word must either be a
dictionary word or consist of two parts, where the first part must be a dictionary word or its non-empty
prefix, and the second part – a dictionary word or its non-empty suffix.

The Institute of Language Simplification has assigned you the task to count the number of different
approved words that can be constructed from the given dictionary.

Input
The first line of the input file contains the number of dictionary words n (1 ≤ n ≤ 10 000). The following
n lines contain dictionary words, one word per line. Dictionary words are composed of lowercase Latin
letters and are at least 1 and at most 40 letters in length.

The Institute of Language Simplification did not necessary do a good job of cleaning the input data, so
their list may contain duplicates.

Output
The output file must contain a single integer – the number of different approved words.

Sample input and output

dictionary.in dictionary.out
3
abc
def
abef

60

Page 5 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem E. Eve
Input file: eve.in
Output file: eve.out

Mitochondrial DNA is the Deoxyribonucleic acid molecule that is contained in mitochondria within cells
of an organism.

Mitochondrial DNA is normally passed to a child exclusively from its mother. Because of this fact, it is
possible to speak of “Mitochondrial Eve” which refers to the most recent common matrilineal ancestor
of the entire population. Matrilineal ancestry is traced through female line: mother, grandmother, etc.

Mitochondrial Eve of the Earth’s human population is estimated to have lived around 200 000 years ago,
most likely in the East Africa.

In this problem, we consider a certain population of the same biological species (eukaryotic and anisog-
amous). The population has been observed for a period of time, and all births and deaths were clearly
recorded. For some of the individuals within the population, their mitochondrial DNA was sequenced.
It is assumed that each individual in the observed population received its mitochondrial DNA from its
mother without any mutations.

Your task is to find out, whether all individuals currently alive have the same mitochondrial DNA.

Input
The first line of the input file contains integer n (1 ≤ n ≤ 100 000), the number of individuals that were
alive at the beginning of the observation period. IDs of these individuals are integers from 1 to n.

Next n lines contain one character each. The i-th of these lines describes the sex of the individual with
ID i. ‘M’ stands for male, ‘F’ stands for female.

The next line contains integer m (0 ≤ m ≤ 100 000), the total number of births and deaths that happened
during the observation period.

Next m lines contain description of birth and death events, listed in chronological order.

A birth event is described by three space-separated tokens: the ID of the father, the ID of the mother,
and a character that describes the sex of the child (‘M’ for male, ‘F’ for female). The ID given to the
offspring is the smallest positive integer that hasn’t been used as an ID by this point of time.

A death event is described by a single negative integer, whose absolute value equals the ID of the individual
that died.

The next line contains integer k (0 ≤ k ≤ n + m), the number of sequenced mitochondrial DNAs.

Each of the next k lines contains two space-separated integers, the ID of the individual whose mitochon-
drial DNA has been sequenced, and the unique identifier of the mitochondrial DNA of that individual.
Unique identifiers of two mitochondrial DNAs are the same if and only if the corresponding sequenced
mitochondrial DNAs are the same. All unique identifiers of the mitochondrial DNAs are integers from 1
to 109.

All the data given in the input file is consistent and non-contradictory. Each individual’s mitochondrial
DNA was sequenced at most once. At least one individual was alive at the end of the observation period.

Output
The output file must contain a single word:

• YES – if it can be derived that all the individuals that are alive at the end of the experiment have
the same mitochondrial DNA;

• NO – if it can be derived that some of the individuals that are alive at the end of the experiment
have different mitochondrial DNA;

• POSSIBLY – if none of the cases above takes place.

Page 6 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Sample input and output

eve.in eve.out
4
M
F
M
F
12
3 4 F
1 2 M
1 2 M
3 4 F
-3
-2
-4
-1
6 5 M
7 5 F
-7
-6
0

YES

3
F
F
M
3
3 2 M
3 1 F
-3
2
4 100500
5 100500

YES

3
M
F
M
2
1 2 M
3 2 F
0

POSSIBLY

2
M
F
2
1 2 M
-2
2
1 2011
2 2012

NO

Page 7 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem F. Flights

Input file: flights.in
Output file: flights.out

Army is busy: military exercises had started yesterday. All types of forces are doing, hopefully, a good
job. For example, artillery is launching missiles, while aviation is delivering supplies to infantry.

The military ground space is a straight line. Aviation bases and infantry regiments are located somewhere
on the line, and artillery is launching ballistic missiles everywhere. All missile launches are planned (don’t
forget, it’s just an exercise), each at a certain time along a certain trajectory. Aviation flights are also
planned in certain time and space intervals. Everything will be fine, but there are those missiles, which
can be deadly even during exercises!

You should help aviation generals to plan the minimal safe altitude for each flight. Given the information
about flight’s time and space intervals, the minimal safe altitude for a flight is the minimal altitude such
that all missile trajectories in the corresponding time and space interval are at or below this altitude. If
there are no missiles in the flight’s time and space interval, then the minimal safe altitude is defined to
be zero.

Ballistic missiles are launched from the ground, which is defined to have a zero altitude, and fly along a
vertically symmetrical parabola. Missile speed is ignored for this problem, missiles are assumed to follow
their trajectory instantaneously.

For example, the picture below shows trajectories of two ballistic missiles in solid lines, and the minimal
safe altitudes for four different flights in dashed lines. Vertical lines delimit space intervals of each flight
in this sample. Time intervals of the flights in this sample include the launch of both missiles.

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

Input
The first line of input contains a single integer n — the number of missile launches planned
(1 ≤ n ≤ 50 000).

The following n lines describe one missile launch each. Each line contains three integers: the missile
launch point p and coordinates of the highest point of missile trajectory x and y (0 ≤ p < x ≤ 50 000,
0 < y ≤ 50); p and x are coordinates along the military ground line, y gives the altitude of the highest
point of missile trajectory. Missiles are launched one by one every minute in the order they are described
in the input.

Next line contains the single integer m — the number of flights planned (1 ≤ m ≤ 20 000).

The following m lines describe one flight each. Each line contains four integers: t1 and t2
(1 ≤ t1 ≤ t2 ≤ n) — the time interval for the flight, and x1 and x2 (0 ≤ x1 ≤ x2 ≤ 50 000) — the
space interval for the flight along the military ground line. Time and space intervals are inclusive of their
endpoints. Time moment 1 corresponds to the first missile launch, and time moment n corresponds to
the last one.

Output
For each flight write a separate line with the minimal safe altitude, with absolute error not exceeding
10−4.

Page 8 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Sample input and output

flights.in flights.out
2
10 30 10
20 30 30
4
1 2 0 11
1 2 20 25
1 2 25 35
1 2 45 100

0.975
22.5
30.0
4.375

2
0 10 10
30 40 10
6
1 2 0 32
1 1 19 35
2 2 0 32
1 2 15 35
1 2 21 27
1 2 2 100

10.0
1.9
3.6
7.5
0.0
10.0

Page 9 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem G. GCD Guessing Game

Input file: gcd.in
Output file: gcd.out

Paul had a birthday yesterday, and they were playing a guessing game there with Andrew: Andrew was
trying to guess Paul’s age. Andrew knew that Paul’s age is an integer between 1 and n, inclusive. Andrew
can guess any number x between 1 and n, and Paul will tell him what is the greatest common divisor of
x and his age.

Here’s a possible course of the game for n = 6. Andrew starts with guessing 3, and Paul replies that the
greatest common divisor of 3 and his age is 1. That means that Paul’s age can’t be 3 or 6, but can still
be 1, 2, 4 or 5. Andrew continues with guessing 2, and Paul replies 2. That means that Paul’s age can’t
be 1 or 5, and the only two remaining choices are 2 and 4. Finally, Andrew guesses 4, and Paul replies
2. That means that Paul’s age is 2, and the game is over.

Andrew needed three guesses in the above example, but it’s possible to always determine Paul’s age in at
most two guesses for n = 6. The optimal strategy for Andrew is: at the first step, guess 6. If Paul says
1, then its 1 or 5 and he can check which one by guessing 5. If Paul says 2, then its 2 or 4, and he can
check by guesing 4 as we’ve seen above. If Paul says 3, then we already know the answer is 3. Finally, if
Paul says 6, the answer is 6.

What is the number of guesses required in the worst case if Andrew guesses optimally for the given n?

Input
The input file contains one integer n, 2 ≤ n ≤ 10 000.

Output
Output one integer — the number of guesses Andrew will need to make in the worst case.

Sample input and output

gcd.in gcd.out
6 2

Page 10 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem H. Huzita Axiom 6
Input file: huzita.in
Output file: huzita.out

The first formal axiom list for origami was published by Humiaki Huzita and Benedetto Scimemi and
has come to be known as the Huzita axioms. These axioms describe the ways in which a fold line can be
generated by the alignment of points and lines. A version of the six axioms follows.

1. For points p1 and p2, there is a unique fold that passes through both of them.

2. For points p1 and p2, there is a unique fold that places p1 onto p2.

3. For lines l1 and l2, there is a fold that places l1 onto l2.

4. For a point p1 and a line l1, there is a unique fold perpendicular to l1 that passes through point p1.

5. For points p1 and p2 and a line l1, there is a fold that places p1 onto l1 and passes through p2.

6. For points p1 and p2 and lines l1 and l2, there is a fold that places p1 onto l1 and p2 onto l2.

Roman is a good coder, but he is new to origami construction, so he decided to write a program to
calculate the necessary folds for him. He already finished coding the cases for the first five axioms, but
now he is stuck on the harder case, the axiom number 6. So he decided to hire a team of good coders —
your team — to implement this case for his program.

Input
The input consists of one or more test cases. The total number of test cases t is specified in the first line
of the input file. It does not exceed 20 000.

Each test case consists of exactly four lines, describing l1, p1, l2 and p2, in that order. Each line is
described by four integers — the coordinates of two different points lying on it: x1, y1, x2, y2. Each point
is described just by two integers — its x and y coordinates. All coordinates do not exceed 10 by their
absolute values. It is guaranteed that neither p1 lies on l1 nor p2 lies on l2. Lines l1 and l2 are different,
but points p1 and p2 may be the same.

Output
For each test case write a separate line with the description of the straight line one should use for folding.
Use the same format as in the input — specify the coordinates of two points on it. Either x or y
coordinates of those two points must differ by at least 10−4. Coordinates must not exceed 109 by their
absolute value. The judging program will check that both the distance between p1 after folding and l1;
and the distance between p2 after folding and l2 do not exceed 10−4. If there are multiple solutions, any
one will do. If there are no solutions, output the line of four zeros, separated by spaces.

Sample input and output
The picture to the right illustrates the first sample. The fold line is dashed.

huzita.in huzita.out
2
0 0 0 1
2 1
0 0 1 0
1 2
0 0 0 1
5 0
1 0 1 1
6 0

0.0 1.0 2.0 -1.0
0 0 0 0

p1

p2

l2

l1

Page 11 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem I. Interactive Permutation Guessing

Input file: standard input
Output file: standard output

There is a permutation a of size n that you have to guess interactively.

You are allowed to make queries of the following kind. You output any permutation b of size n. The
information given back to you is the length of the longest common subsequence of permutations a and b.

Interaction protocol
First, your program must read from the standard input one line with integer n, the size of the permutation
you have to guess.

Your program must then write to the standard output one line with a permutation and wait for a line in
the standard input with a response, then write next query and read next response, and so on until you
know a.

Once you receive response n (which means you’ve found a), you’re done and your program must exit.

Input
The first line of the standard input contains integer n, the size of the permutation (1 ≤ n ≤ 40).

Each of the next lines of the standard input contains response to your query — the length of the longest
common subsequence of the permutation queried by you and the permutation a.

Output
Each line of the standard output should contain a space-separated list of integers that form a permutation
you’re querying.

Your can make at most 5n2 queries.

You must flush the standard output after printing each line. You must not print any lines after you
receive the response n, just exit.

Sample input and output

standard input standard output
4
3
2
2
4

1 2 3 4
1 3 4 2
4 1 2 3
3 1 2 4

Page 12 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem J. Journey

Input file: journey.in
Output file: journey.out

There is a robot who lives on a cartesian plane and likes to walk around it. One day he planned a very
interesting journey around the plane. To make that journey he developed a program which he is going
to follow. The program consists of n functions: f1, f2, . . ., fn. The i-th function fi is a sequence of ci

commands. Each command is of one of the following types:
• GO: Move forward one meter;
• LEFT: Turn 90 degrees to the left;
• RIGHT: Turn 90 degrees to the right;
• Fk: Follow the instructions of the function fk, then continue following the instructions of the current

function.

The robot starts the journey at his home located at the point with coordinates (0, 0) following the
instructions of the function f1.

For example, consider the following set of functions:

f1: GO F2 GO F2 GO F2
f2: F3 F3 F3 F3
f3: GO LEFT

(0, 0)

The robot’s journey for that case is shown on the picture.

In some cases the journey of the robot might never end. Consider for example the set of instructions
consisting of one function f1 that has the following commands: GO F1. In that case the robot keeps
going forward and never stops.

The question that puzzles the robot now is how far from the home will he get during his journey. That
is, consider the set of all points which the robot will visit. Find the maximum value of |x|+ |y| among all
those points. If there are points on the path of the robot with arbitrarily large values of |x|+ |y|, output
“Infinity”.

Input
The first line of the input file consists of an integer number n (1 ≤ n ≤ 100). The following n lines
contain a description of the functions. The i-th line describes function fi. It consists of the number
ci (1 ≤ ci ≤ 100) — the number of commands for function fi, followed by a description of each command.

Output
Output the maximum value of |x| + |y| among all points visited during the journey or “Infinity”.

Sample input and output
journey.in journey.out

3
6 GO F2 GO F2 GO F2
4 F3 F3 F3 F3
2 GO LEFT

5

1
2 GO F1

Infinity

4
2 GO F2
7 LEFT GO GO GO F3 LEFT F4
5 GO F4 RIGHT F2 RIGHT
7 GO GO LEFT LEFT GO LEFT GO

13

Page 13 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem K. Kingdom Roadmap

Input file: kingdom.in
Output file: kingdom.out

The Kingdom consists of n cities connected by n − 1 roads in such a way that there is exactly one way
to travel from one city to another.

The King is a busy man and he constantly travels from city to city. Unfortunately, during one of his
travels one of the roads got damaged and needed serious repairs. As a result, the King was unable to
reach his destination in time.

After the incident the King decided to improve reliability of the road system. It was decided that the
improved road system shall be able to withstand one damaged road, i.e. there shall always be a path
from one city to another even when one road in the Kingdom is damaged. As always, the budget is
limited so you need to minimize the number of new roads.

For example, the picture below shows 5 Kingdom’s cities numbered from 1 to 5 and roads between them
in solid lines. One of the ways to build new roads is shown in dashed lines.

1

2 3

4

5

Your task is to build as few new roads as possible so that there is always a path between any two cities
even if one of the roads gets unusable for any reason. There may be multiple optimal solutions. Any one
can be used.

Input
The first line of the input file contains integer n — the number of cities in the kingdom (2 ≤ n ≤ 100 000).
The following n − 1 lines contain two integers ui, vi each — the cities connected by i-th road
(1 ≤ ui, vi ≤ n).

Output
The first line of the output file shall contain one integer k — the number of roads to be built. The
following k lines shall contain two integers ai, bi each — the cities which should be connected by i-th
new road (1 ≤ ai, bi ≤ n).

Sample input and output

kingdom.in kingdom.out
5
1 2
2 3
3 4
3 5

2
1 4
4 5

4
1 2
1 3
1 4

2
3 2
1 4

Page 14 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

Problem L. Lanes
Input file: lanes.in
Output file: lanes.out

Intercity Council for People Commute (ICPC) is in charge of operating a new bridge that connects two
busy communities across the river. The bridge does not have enough throughput to accept the maximal
traffic that can arrive on both sides of the bridge. The bridge has just a total of n lanes in both directions,
while roads that connect to the bridge on both sides are wider.

However, the traffic on both sides of the bridge is not symmetric. In the morning more people travel from
the left side of the bridge to the right side, while in the evening more people travel from the right side
to the left side. So it was decided to configure a bridge with n1 lanes for left-to-right traffic, n2 lanes for
right-to-left traffic, and leave one lane in the center as a reversible one (n1 +1+n2 = n). In the morning
the central lane will be open for left-to-right traffic, while in the evening the central lane will be open for
right-to-left traffic.

The challenge is to figure out the optimal time to switch the direction of the central reversible lane.

In order to address this challenge, ICPC had gathered the data on the traffic on the typical day. The
whole day from the morning to the evening was split into equal time intervals. The duration of time
intervals was conveniently chosen in such a way, that the throughput of one lane is exactly one car per
time interval. Time intervals were numbered from 1 in the morning to m in the evening and the data on
the number of cars arriving at each of m time intervals at each side of the bridge was gathered.

The traffic is modeled at each time interval in both direction starting from the first time interval in the
following way:

1. New cars arrive at the bridge.

2. Cars start crossing the bridge in the corresponding direction according to the number of lanes
currently open in the given direction.

3. Remaining cars wait in the queue for the next time interval.

If there are still cars waiting at any side of the bridge after time interval m, then additional time intervals
are modeled in the same way until all cars start crossing the bridge and no cars are waiting to cross,
assuming that no more new cars arrive at the bridge after time interval m.

The reversal of the central lane in not instantaneous process. It takes time to let cars safely clear out
the central lane before the lane can be open for the traffic in the reverse direction. The central lane will
have to be closed for r time intervals. It means, that if decision to reverse the lane on time interval t
(1 ≤ t ≤ m) is made, then the bridge will have n1 + 1 lanes open from left-to-right traffic and n2 lanes
for right-to-left traffic before time interval t; n1 and n2 lanes correspondingly from time interval t to time
interval t+ r−1 inclusive; and n1 and n2 +1 lanes correspondingly on time interval t+ r and afterwards.

Page 15 of 16

ACM ICPC 2011–2012, Northeastern European Regional Contest
St. Petersburg – Barnaul – Tashkent – Tbilisi, November 27, 2011

The problem is to find such time interval t (1 ≤ t ≤ m) to reverse the central lane, that minimizes the
total time that all cars in both directions have to wait in the queue. If the are multiple optimal time
intervals, then the earliest one has to be found.

Input
The first line of the input file contains four integer numbers n1, n2, m, and r; n1 and n2 (1 ≤ n1, n2 ≤ 10)
represent the number of permanently open lanes for left-to-right and right-to-left traffic respectively; m
(1 ≤ m ≤ 100 000) is the number of time intervals in a day; r (1 ≤ r ≤ m) is the number of time intervals
that the central lane is closed for new traffic on reversal.

The following m lines contains traffic data on the typical day. Each line describes time interval from 1
to m with two integer numbers — the number of cars arriving at the bridge on the left and on the right.
There are at most 100 arriving cars at each time interval on each side.

Output
Write to the output file a single integer t — the earliest optimal time interval to reverse the central lane
per the problem statement.

Sample input and output

lanes.in lanes.out
2 2 10 2
1 0
2 1
3 2
4 2
3 3
2 3
1 5
0 3
1 2
0 1

4

The tables below model the traffic for the above sample, showing at each time interval the number of
lanes open in the given direction, the number of cars that arrive at each time interval (step 1 in the traffic
model as given in the problem statement), the number of cars that start crossing the bridge (step 2), and
the number of cars remaining in the queue (step 3). The total wait time in the queue is 20 time intervals
(10 for left-to-right cars and 10 for right-to-left). Time interval 11 is explicitly shown in this table to
clarify that there is no traffic on this time interval and after it in this particular sample.

time 1 2 3 4 5 6 7 8 9 10 11
left-to-right lanes 3 3 3 2 2 2 2 2 2 2 2
left-to-right cars 1 2 3 4 3 2 1 0 1 0 0
left-to-right cross 1 2 3 2 2 2 2 2 1 0 0
left-to-right queue 0 0 0 2 3 3 2 0 0 0 0
right-to-left lanes 2 2 2 2 2 3 3 3 3 3 3
right-to-left cars 0 1 2 2 3 3 5 3 2 1 0
right-to-left cross 0 1 2 2 2 3 3 3 3 3 0
right-to-left queue 0 0 0 0 1 1 3 3 2 0 0

Page 16 of 16

