ACM ICPC 2013-2014
 Northeastern European Regional Contest Problems Review

Roman Elizarov

December 1, 2013

Problem A. ASCII Puzzle

- The problem is solved by exhaustive search
- fill each spot in the trivial puzzle from the top-left to the bottom-right corner
- try to place each piece that fits
- backtrack after trying all pieces for a place
- Must check which pieces can be placed on borders
- and place them only onto the corresponding borders
- otherwise time-limit will be exceeded

Problem B. Bonus Cards

- The problem is solved by dynamic programming
- Let k be the total number of tickets already distributed, $0 \leq k \leq n$
- Let g be the number of ICPC card holders who already got tickets, $\max (0, k-b) \leq g \leq \min (a, k)$
- Let $P_{s, k, g}$ be the probability of Dmitry getting a ticket with a card that has s slots in each draw round
- $s=2$ for ICPC card, and $s=1$ for ACM card
- Use the following equation to compute the desired probability $P_{s, 0,0}$ for each s:

$$
P_{s, k, g}=\frac{s+2(a-g) P_{s, k+1, g+1}+(b-k+g) P_{s, k+1, g}}{s+2(a-g)+(b-k+g)}
$$

- Here $s+2(a-g)+(b-k+g)$ is the total number of slots in this draw round for Dmitry's card, for $a-g$ remaining ICPC cards, and for $b-k+g$ remaining ACM cards

Problem C. Cactus Automorphisms

- Use depth-first-search to find all cycles in the given graph G
- Build graph G^{\prime} with original vertices, and where each cycle in G is a new vertex, and each edge which is a part of a cycle is a new vertex (new vertices are in white)

Problem C. Cactus Automorphisms (2)

- Graph G^{\prime} is a tree
- G^{\prime} has an even diameter and has the unique center
- The center of G^{\prime} is either a vertex, a cycle or an edge in G
- Hang the graph G^{\prime} using its center as a root and count a number of automorphisms on a tree in bottom-up fashion
- k identical children of a vertex can be rearranged for k ! combinations
- children of a cycle in G can be rearranged for 2 combinations if the sequence of children on this cycle can be reversed
- The root of tree G^{\prime} needs a special attention when it corresponds to a cycle in G
- it may have rotational symmetries and/or a mirror symmetry
- it may have a lot of children, so an efficient algorithm (like Knuth-Morris-Pratt) must be used to find those symmetries

Problem D. Dictionary

- Let P be a set of prefixes for a given set of words
- Build a weighted directed graph with nodes P
- add an edge of weight 1 from a prefix p to all prefixes $p c$ (for all characters c)
- add an edge of weight 0 from a prefix p to a prefix q when q is a suffix of p
- 1-edges of this graph constitute a trie for a given set of words
- but it is not an optimal solution
- Minimum spanning tree in this weighted directed graph corresponds to the problem answer
- use Chu-Liu/Edmonds algorithm

An example for words "abcd" and "cdefa"

Problem E. Easy Geometry

- Let $\left(x, y_{t}(x)\right)$ be the top point of the polygon at a given coordinate x and $\left(x, y_{b}(x)\right)$ be the bottom point of the polygon
- these functions can be computed by a binary search
- Let $s_{w}(x)$ be the max generalized square of a rectangle of the fixed width w with the left edge at x
$s_{w}(x)=w \times\left(\min \left\{y_{t}(x), y_{t}(x+w)\right\}-\max \left\{y_{b}(x), y_{b}(x+w)\right\}\right)$
- Let $s(w)=\max _{x} s_{w}(x)$ be the max square of a rectangle of the fixed width w
- $s_{w}(x)$ is convex, so $s(w)$ can be found by a ternary search
- Let $s=\max _{w} s(w)$ be the max square of a rectangle - the answer to the problem
- $s(w)$ is convex, so s can be found by a ternary search

Problem F. Fraud Busters

- This is the simplest problem in the contest
- It is solved by going over a list of codes and checking each one against a code that was recognized by the scanner

Problem G. Green Energy

- Compute coordinate z for each point - coordinate of the projection onto a line perpendicular to the sun
- Place the largest tower at a point with the max z coordinate
- Place other towers in any order on points with decreasing z coordinates so that they do not obscure each other
- If min z coordinate is reached and some towers are left, then place them anywhere

Problem H. Hack Protection

- Compute cumulative xor values $x_{i}=\otimes_{j=1}^{j<i} a_{j}$ (\otimes for xor)
- this way, xor for any subarray $[i, j)$ is equal to $x_{i} \otimes x_{j}$
- Create a map M which keeps for each value of x_{i} the list of indices i with this value of x_{i}
- Compute $b_{i, j}$ - the first index at or after i where j-th bit of a_{i} becomes zero
- Loop for all i_{0} from 1 to n
- using $b_{i, j}$ one can quickly find consecutive ranges $\left[i_{k}, i_{k+1}\right)$ of indices where and of subarrays $\left[i_{0}, t\right)\left(i_{k} \leq t \leq i_{k+1}\right)$ has the same value b
- note, that there are at most 32 such ranges for each i_{0}
- use a map M to find a list of all indices with value of $x_{i 0} \otimes b$
- use a binary search on this list (twice) to find how many indices from this list are in the range $\left[i_{k}, i_{k+1}\right.$)
- that is the number of matching values for all subarrays $\left[i_{0}, t\right)$

Problem I. Interactive Interception

- The state space of a point can be kept in array of min and max possible position for each speed
- There are at most 10^{5} possible speeds, so this array can be scanned in a loop on each turn
- Find R that splits a state space roughly in half using binary search
- Use "check 0 R" query
- Update the state space after reading the answer
- Repeat until the point's position can be unambiguously determined

Problem J. Join the Conversation

- The problem is solved by dynamic programming
- For each author maintain a map M from an author to a pair of an index and a length of the maximal conversation with the last message from this author
- Process messages in order, find all mentions in a message, and update map M for the author of this message
- if you find mentions by looking at ' $@$ ' then do not forget to check for a space before it
- the easiest way to find mentions is to split the message by spaces

Problem K. Kabaleo Lite

- $n=1$ is a special case
- the answer depends on the chip of the last player
- For $n>1$ analyze the best strategy for other players:
- they place all chips onto the chips of your hidden color h
- they will obscure as many as possible of your chips on the board, and will place as many as possible of other colors onto the board
- Compute the maximal possible number of chips of each color on the board according to the above
- Check each possible move of yours to find the answer
- you win only if the number of your color h on the board exceeds any other number
- you need to maintain the number of only two best other color to figure if the above is true

